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SUMMARY 

One of the key limit states of Buckling-restrained braces (BRBs) is global flexural buckling 
including the effects of the connections. The authors have previously proposed a unified explicit 
equation set for controlling the out-of-plane stability of BRBs based on bending-moment transfer 
capacity at the restrainer ends. The proposed equation set is capable of estimating BRB stability 
for various connection stiffness, including initial out-of-plane drift effects. However, it is only 
valid for symmetrical end conditions, limiting application to the single diagonal configuration. In 
the chevron configuration, the out-of-plane stiffness in the two ends differs because of the 
rotation of the attached beam. In this study, the equation set is extended to BRBs with 
asymmetric end conditions, such as the chevron configuration. Cyclic loading tests of the 
chevron configuration with initial out-of-plane drifts are conducted, and the results compared 
with the proposed equation set, which is formulated as a function of the normalized stiffness of 
the attached beam.  
 
KEY WORDS: Buckling-restrained brace, Connections, Chevron configuration, Cyclic loading 
test, Moment transfer capacity, Mechanical stability 
 
 

1. INTRODUCTION 

One key factor that influences the seismic performance of buckling-restrained braces is the 
global flexural buckling. In the past 25 years, numerous researchers have conducted 
experiments and numerical analysis on BRBs to establish a method of avoiding global flexural 
buckling and ensuring stable hysteresis. However, the critical aspect of BRB performance 
requires inclusion of the connection effect in the assessment of the buckling failure mode. 
Takeuchi et al. [1] summarized the most recent literature related to connection failure, which 
includes research highlights [2–14] and the steel structure seismic provisions [15–16]. 
Additionally, Lin et al. [17] investigated the connection stress distribution by means of 
experimental testing and FEM analysis, proposing several design recommendations. Zhao et al. 
[18] proposed a practical design method to ensure the global stability of the BRBs based on a 
moment amplification factor, in order to simplify the effect of connections. Bruneau et al. [19] 
suggested evaluation of BRB connection buckling strength by Euler buckling, taking the 
equivalent length as twice the connection length. This is based on the assumption that the ends 
are rotationally rigid, idealizing the connection as a cantilever. However, this assumption is 
optimistic in actual conditions, as the effect of end rotations is not negligible, especially in 
chevron configurations.  

The previous studies have treated the restrainer-ends as pin connections, and the gusset 
plates ends as rotationally fixed. However, the bending-moment transfer capacity at the 
restrainer ends and gusset plate rotational stiffness significantly affects the global stability of 
BRBs. Additionally, these past studies have generally not considered the effects of story drift in 
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the out-of-plane direction. Although Palmer et al. [20] carried out bi-directional tests on 
pin-ended BRBs, effects on bolted BRBs were not clarified. These shortcomings were addressed 
by the author’s previously proposed method [1], namely a more rigorous treatment of boundary 
conditions including bending moment transfer-capacity at the restrainer ends and initial 
imperfections due to bi-directional effects. The authors discussed the stability requirements for 
BRBs in a one-way configuration, including the aforementioned conditions, and proposed a 
simple set of equations. As part of that study, the authors performed cyclic axial loading tests on 
BRBs with an initial out-of-plane drift and verified the accuracy of the proposed equation set. 
However, the proposed equations are derived under the condition that the same connections 
exist at both ends, a condition which is applicable only for certain one-way configurations 
(Figure 1(a)). In the present study, the equation set is extended to BRBs in a chevron 
configuration (Figure 1(b)) with asymmetrical end conditions, and a general stability evaluation 
method for BRBs is proposed. A series of cyclic loading tests on BRBs in a chevron 
configuration (Figure 1(c)) is conducted, and the results are compared with those obtained using 
the proposed extended equations. 

 

 

 

 

 

 

 

 

  (a) One-way configuration        (b) Chevron configuration 

     (c) Cyclic loading test with  
                         Figure 1 Chevron BRB configuration         chevron configuration 

 
2 STABILITY LIMITS UNDER ASYMMETRICAL CONDITIONS 

The authors have proposed the following equations to evaluate the stability limit of BRBs, 
including the connection effect. The stability limit axial force, Nlim1, is expressed as follows [1], 
which needs to be larger than the maximum yield axial force of the core member, Ncu.  
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Here, Mp

r denotes the moment transfer capacity at the restrainer end and M0
r denotes the initial 

bending moment at the restrainer ends produced by out-of-plane drift (Appendix A). ar denotes the 
initial imperfection at the restrainer ends, which can be estimated as ar=   02t r r ina e s s L L   , 
and is shown in Fig. 2 in the Notations. Ncr

B denotes the global elastic buckling strength of a BRB, 
including the effects of the bending stiffness of the connection zone and the rotational stiffness of 
gusset plates (Appendix B). The difference of (Mp

r – M0
r) is assumed as zero for negative values. 

Ncr
r is the buckling strength of connections, where the bending-moment transfer capacity at the 

restrainer ends is not considered. In the elastic range with fixed end rotations, this value is 
estimated as N 

r
cr=2JEIB/(2L0)

2. In the elasto-plastic range with end rotational springs, N 
r
cr can 

be evaluated by substituting the equivalent slenderness ratio, given in Equation (2), into the  
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(a) stable (Ncu < stability limit)         (b) Unstable (Ncu > stability limit) 

Figure 2 Initial imperfection             Figure 3 Stability concepts and limits 
 

various elasto-plastic design column curves. 
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Here, L0 is the connection length, ic is the radius of gyration in the connection zone, Rg is the 
normalized rotational stiffness at the outer ends of the connections given by Rg=

0( ) /( )Rg J BK L EI  , and KRg is the rotational stiffness of the gusset plate. When the moment 
transfer capacity Mp

r=0 and Rg is infinity, Equations (1) and (2) give the same criteria as 
Bruneau et al. [19]. However, as reported in Ida et al. [21], Rg is distributed between 0.2 and 
1.0 in actual connections, and the effective buckling length becomes larger than twice the 
connection length. 

Similar to Equation (1), under the assumption that plastic hinges are created at the gusset 
plates, the expected limit axial force, Nlim2, is proposed as follows [1]:  
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, (3) 

 
where Mp

g is the plastic bending strength of the gusset plate including the axial force effect. 
[(1-2)Mp

g - M0
 r] or [Mp

r – M0
r] should be taken as zero if the difference is negative.  

The smaller of the two limit forces obtained from Equations (1) and (3) becomes the stability 
limit axial force, Nlim, and the BRB is considered to be stable where Nlim is larger than the 
maximum yielding force of the core, Ncu. These equations have been derived from the 
intersection of the elastic buckling path and ultimate strength curve as shown in Figure 3. The 
elastic buckling path can be defined as follows:  

Br
cr

r r

y
N N

y a


  (4) 

where yr denotes out-of-plane deformation at restrainer ends, and B
crN  denotes the global elastic 

BRB buckling strength, including the effects of the connection zone’s bending stiffness and the 
gusset plates’ rotational stiffness. This can be evaluated by the method in Appendix B.  

The above equations are applicable under the condition that the connection length ratio, , 
and the normalized rotational stiffness, Rg, are the same at both ends. However, this condition 
is not satisfied in the chevron configuration because the upper beam cannot be assumed as rigid  

 

  



4 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
(a) GPL springs with  (b) equivalent spring        (a) symmetric, (b) asymmetric, (c) one-sided 

beam spring         at the beam center Figure 5 Collapse mechanism modes with 
 Figure 4 Collapse model for chevron configuration    rotational springs 

 
(Figure 4 (a)). In this configuration, the equivalent connection length ratio becomes larger and 
the rotational stiffness becomes smaller, due to the rotation of the connected beam. The length 
of the upper connection, L0, is measured from the cross-sectional center of the beam, while the 
rotational stiffness is expressed by the following Equation (5), and shown in Figure 4 (b). 
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Here, KRb is the rotational stiffness of the beam about the brace major axis with the brace 
bending in the out-of-plane direction, and K’Rg2 is the rotational stiffness of the upper gusset 
plate. When the rotational stiffness of the lower gusset plate at the column–beam joint is defined 
as KRg1, the normalized rotational stiffness at both ends can be defined as Equation (6). 

 
The ultimate strength, which is based on the asymmetrical conditions shown in Figure 5, is 

calculated based on an approach similar to that of the previous study [1]. First, in the symmetric 
collapse mode in Figure 5(a), the gusset plates are assumed to be rigid (KRg1, KRg2 → ∞), and 
out-of-plane deformation of the connection zones is idealized as a sinusoidal shape, as shown in 
the Figure and given in Equations (7) and (8):  
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where yr1 and yr2 denote the out-of-plane deformation at the lower and upper restrainer ends, 
respectively. Similarly, ar1 and ar2 denote the imperfections at the lower and upper restrainer 
ends. The flexural strain energy stored in each connection zone is then given as follows: 
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Including the reduction due to the rotational springs at each gusset plate, the total flexural strain 
energy from the connection zones can be assumed as follows: 
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Note that in Equation (11), the bending deformations of the connection zone becomes equal to 
rotational deformation of the end spring when ξκRg = 3 [1]. The rotation angle of the lower and 
upper plastic hinges at the restrainer ends is expressed as follows:  
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Then, the plastic strain energy stored in the plastic hinges is calculated as follows: 
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The lower gusset plate spring rotation, Δθs1, the upper gusset plate spring rotation, Δθs2, and 
their strain energy, Us, can be expressed as follows: 
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     (16) 

The axial deformation, Δug, is then calculated from Equation (17) using the approximation
2 8 1  .  
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Assuming ar2=ar, ar1=ra ar, yr2=yr, and yr1=ra yr, the external work T is estimated from Equation (18). 
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From Equation (19), we obtain the formula of N as a function of Mp
r, Rg1, Rg2, , and 

By reducing the moment transfer-capacity, Mp
r, by the out-of-plane drift induced moment, 

M0
r, as same in the previous study [1], the ultimate strength of the BRBs can be expressed as 

follows: 
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By a similar process, in the asymmetrical collapse mode in Figure 5(b), Equation (21) becomes 
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For the one-sided collapse mode shown in Figure 5(c), Equation (21) becomes 
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Comparing Equations (21), (22), and (23), the minimum Ncr
r is determined by the 

asymmetrical or one-sided mode. As a result, the stability limit—determined by the cross point 
of Equation (4) and Equation (20)—can be expressed as Equation (1).  
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r can be obtained using the equivalent slenderness ratio, given as follows: 
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C1 and C2 in Equation (24) are defined in Equation (22).  
Furthermore, the stability limit with plastic hinges at the gusset plates, Nlim2, can be 

expressed as follows: 
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(Asymmetrical mode) (26) 
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p p r cr

M M M M a
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  

  

        
        

 (27) 
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It can easily be confirmed that Equations (24) and (26) become Equations (2) and (3), 
respectively, when 1= 2, Rg1=Rg2 and ra=1. 
 

3 CYCLIC BRB LOADING TESTS WITH CHEVRON CONFIGURATION 

To validate the proposed stability equations, cyclic loading tests were performed on BRBs in 
a chevron configuration, including initial out-of-plane drifts. The test program simulated the 
worst-case scenario, in which the maximum in-plane story drift occurs at the same time as the 1% 
out-of-plane story drift. The test configuration with the specimen is shown in Figures 6–9, and the 
test matrix is summarized in Table 1. The core plate material was JIS-SN400B (average yield  

 
 

 

 

 

 

 

 

 

 

 

 

 
 

                                 Figure 7 Types of secondary beams 
    Figure 6 Test setup and loading protocol                                            

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 8 Types of gusset plates (mm)     Figure 9 BRB specimens with various restrainer ends (mm) 
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Table 1. Test matrix 

  
 
strength=293 MPa), and the core cross-section size Ac was 12 × 90 mm. The restrainer is either 
a mortar-filled square box section with the width of 125 mm and thickness of 4.5 mm, or a 
circular tube with an external diameter of 165.2 mm and tube wall thickness of 4.5 mm. Three 
connection types of upper secondary beams as shown in Figure 7, combined with the gusset 
plates as shown in Figure 8, were used in the tests: the high-stiffness connection (κRg2 = 2.73), 
the medium-stiffness connection (κRg2 = 1.46), and the low-stiffness connection (κRg2 = 0.19). 
The specimens were labelled as (H, M, or L: stiffness at the upper connection)-(R: rectangular 
restrainer, C: circular restrainer)-(N: no reinforcement, F: ribs, C: collars)-2 (ratio of the insert 
zone length to the core plate width). Rotational stiffness of each combination was measured 
experimentally using the test frame (Appendix C). For the low-stiffness type, restrainer end 
reinforcements were attached to RF2 with ribs and CC2 with collars as in Figure 9 (iv) and (v). 
The fabrication of BRBs and gusset plates were carried out under AIJ/JASS6 specifications, and 
the initial imperfection of the specimen was confirmed less than 1/2000 of the length. This 
value was counted in the stability assessment. Prior to each test, an out-of-plane displacement 
equivalent to 1% radian story drift was applied to each specimen. For cyclic loading, up to 3% 
normalized axial deformation (n=δ/Lp) was applied, according to the loading protocol shown in 
Figure 6. Here, the normalized axial deformation, which is approximately equivalent to the 
story drift angle, is the ratio of the axial deformation to the plastic length, Lp, of the core plate. 
After n=3.0%, the same amplitude was used until fracture. 

The hysteresis loops obtained from the cyclic loading tests for each specimen are shown in 
Figure 10. The axial stress is defined as the axial force divided by the initial core section area.  
Each figure also shows the cumulative plastic deformation, p = p/Lp, and the normalized 
cumulative absorbed energy, w = Ed/yAc, until instability. Specimen H-RN2 (Figure 10 (a)), 
with the high-stiffness connection, showed stable hysteretic behavior until the core plate 
fractured after the 18th cycle of 3% normalized axial deformation. Similarly, specimen M-CN2 
(Figure 10 (b)), with a medium-stiffness connection, showed stable hysteresis until the 18th 
cycle of 3% normalized axial deformation. This performance would easily satisfy the 
requirement for energy-dissipating braces. Specimen L-RN’2 (Figure 10 (c)), which has a 
low-stiffness connection with weaker restrainer-ends, showed stable hysteresis until the second 
cycle at 3% normalized axial deformation, after which out-of-plane instability occurred. The 
specimen started buckling in the asymmetrical mode as shown in Figure 10 (g), agreeing with 
the predicted failure mechanism. Even under the same low stiffness beam conditions, the 
specimens with restrainer-end reinforcements (L-RF2, L-CC2) showed stable hysteresis of 3% 
normalized axial deformation until the core plate fractured at the 18th and 15th cycles, 
respectively, as shown in Figure 10 (d) and (e). This means that the restrainer-end 
reinforcements are effective in enhancing the stability limits. In L-CC2, friction between the 
collar and the restrainer caused slight strength increase at 3% compression. Specimen L-RN0 
(Figure 10 (f)), which has the low-stiffness gusset plates without an insert zone length, showed a  

Core
area

Core
yield

strength

Restrainer
stiffness

Lower
spring

Upper
spring

Upper
GL

spring

Beam
Spring

Connection

stiffness*
Total
length

Insert
length

Plastic
zone

length

Lower
connection

length

Upper
connection

length

Cleara
nce

upper
normarized

spring

A c  cy EI B K Rg 1 K Rg 2 K Rg 2' K Rb  J EI B L 0 L in L p  1L 0  L 0 s r   Rg 2

(mm
2
) (N/mm

2
) (kNm

2
) (kNm) (kNm) (kNm) (kNm) (kNm

2
) (mm) (mm) (mm) (mm) (mm) (mm)

H-RN2 1080 293 1080 11426 3153 3585 26174 696 2460 180 1044 454 602 1.0 2.73

M-CN2 1080 293 1500 11426 1691 3585 3202 696 2460 180 1044 454 602 1.0 1.46

L-RN'2 1080 293 1080 306 221 351 598 696 2460 180 1044 454 602 1.0 0.19

L-RF2 1080 293 1080 306 221 351 598 696 2460 180 1044 454 602 1.0 0.19

L-CC2 1080 293 1500 306 221 351 598 696 2460 180 1044 454 602 1.0 0.19

L-RN0 1080 293 1080 306 221 351 598 696 2460 0 1404 454 602 1.0 0.19

*Contribution of the splice plate section to the connection stiffness is neglected

Specimen
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(g) Instability                    

of L-RN’2 

  
(h) Out-of-plane displacement in L-RN’2 and L-RN0                                       

Figure 10 Normalized axial force–deformation relationship 
  
stable hysteresis loop until only the first cycle of 0.5% normalized axial deformation, after 
which it experienced out-of-plane instability associated with hinging at the neck in a similar 
mode as L-RN’2. These test results indicate that the stability of a BRB with a chevron 
configuration is significantly affected by the rotational stiffness of the attached beams and the 
strength of the restrainer ends, as the proposed equations predicted. Figure 10 (h) shows the 
out-of-plane displacement transitions at the upper and the lower restrainer ends in the collapsed 
specimens of L-RN’2 and L-RN0. Both show larger amplitudes at the upper restrainer ends 
prior to instability, which indicates that these specimens collapsed in an asymmetric mode with 
larger displacements at the upper connections as shown in Figure 5 (b). 

In order to confirm the validity of the proposed equations, each specimen was evaluated 
using Equations (4), (20), and (24)–(27). The restrainer moment transfer capacity, Mp

r, of each 
specimen was estimated using the same equations as those in the previous study [1]. In Table 2, 
the estimated values of the stability limit, Nlim, are compared with the maximum axial loads 
obtained from the tests. It is observed that the expected stability limits of collapsed specimens 
L-RN’2 and L-RN0 were 371 kN and 256 kN, respectively, which were lower than the expected  

 

 

L-RN’2 L-RN0 
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Table 2 Stability evaluations using proposed equation 

  
 
 
 
 
 
 
 
 
 
 
 

(a) L-RN’2                    (b) L-RN0 
Figure 11 Relationship between axial force and out-of-plane displacement 

 
BRB design axial force Ncu= 1.5 × Ac× σcy = 475 kN. The Nlim values of all other specimens 
exceeded the design axial force Ncu of 475 kN, which satisfactorily demonstrated stable 
hysteresis. Figure 11 shows a comparison between the measured axial force–displacement 
relationships of the collapsed specimens and those obtained using Equations (4)and (20). 
Although the test results that exceeded the stability limit had larger force–displacement 
relationships than those obtained using the proposed equations, the stiffness degradation points 
generally agreed with the predicted strength, and their force-displacement paths after the 
collapse tended to fall in parallel to the estimated collapse path. 

 
4 STABILITY DESIGN OF BRB WITH CHEVRON CONFIGURATION 

Although the proposed equations can be used to evaluate the stability of BRBs in chevron 
configurations, the equations are too conservative in cases where the rotational stiffness of the 
upper beam KRb is high. This is because of the simplification in taking a single spring at the 
beam center instead of two springs as shown in Figure 4 (a). Where rotational stiffness of the 
beam is relatively high, the rotation of the connection is observed to start near the bottom of the 
beam. Here, an additional approach using simplified models for evaluating these effects is 
proposed. When the moment transfer capacity at the restrainer-ends is negligible, the precise 
stability limit of the symmetrical collapse mode is determined by using the double-spring model 
of the beam rotation and upper connection flexure as shown in Figure 12(a). Further 
simplifications representing special conditions are shown in Figures 12(b)–(d). 

When the rotational stiffness of the upper beam is low (KRb < aK’Rg2), the spring should be 
placed at the beam center as in Model-1 (Figure 12(b)). The rotational stiffness of the upper 
connections should be evaluated using Equation (5), the connection length should be evaluated 
as 2L0, and Equations (1) and (24)–(27) should be used for stability evaluation. However,  
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M p
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(kNm) (kNm) (kNm) (kNm) (kN) (mm) (kN) (mm) (kN) (kN) (kN) (kN) >N cu (kN)

H-RN2 4.27 0.0 355 274 5241 4.0 428 63 31.3 475 1237 4717 1237 OK No collapse

M-CN2 4.27 0.0 355 274 4369 4.8 389 75 31.3 475 1060 3932 1060 OK No collapse

L-RN'2 1.75 0.0 2.48 2.49 2151 5.6 112 170 31.3 475 370 450 370 NG 527

L-RF2 23.0 0.0 2.48 2.49 2151 4.0 112 170 31.3 475 1595 1591 1591 OK No collapse

L-CC2 45.1 0.0 2.48 2.49 2054 5.0 112 170 31.3 475 1693 1683 1683 OK No collapse

L-RN0 0.51 0.0 2.48 2.49 2151 3.1 112 170 31.3 475 257 485 257 NG 339
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(a) Double-spring model,  (b) Model-1,   (c) Model-2,  (d) Model-3                       

Figure 12 Mechanical model at upper connection  
                                     

    

 

 

 
 

  
 
Figure 13 Stability limit  

           Figure 14 Full model 2/g = 1.6                             for connection model                 

                                                   

 

 

 

 

 

 

 

 

Figure 15 Simplified models vs. accurate model        Figure 16 Accuracy of proposed method 

 
when the rotational stiffness of the upper beam is considerably higher (aK’Rg2 < KRb < bK’Rg2), 
Model-2 (Figure 12(c)) can be used, with the spring placed at the bottom of the beam. The beam 
rotation may be neglected and Model-3(Figure 12(d)) used when the rotational stiffness of the 
upper beam is extremely high (bK’Rg2 < KRb) due to stiff perpendicular secondary beams, floor 
slabs, and other elements. The stability limits of the models in Figures 12(a)–(d) is expressed in 
the following equations. 

Note that from Equation (1), Nlim1 (symmetric) becomes the same as Ncr
r when Mp

r=0. 
 
 

 

 



12 

 

      
  

2

2 0 2 0 2 0 2 0 0 0 2

lim1

0 0

' ' 4 '

2

Rg g Rb Rg g Rb g b Rg Rbr
cr

g b

L K L K L K L K L L K K
N N

L L

     

 

   
  

Double-spring model: Figure 11a (28) 

2
lim1

2 0 2 0

2

1 1
=

1 1

'

Rgr
cr

Rg Rb

K
N N

L L
K K

 
 

  Model-1: Figure 11b
 (29)       

2
lim1

0 0

2

1 1
1 1

'

Rgr
cr

g g

Rg Rb

K
N N

L L
K K

 
  


 Model-2: Figure 11c (30) 

2
lim1

0

'Rgr
cr

g

K
N N

L
   Model-3: Figure 11d (31) 

The stability limits derived from Equations (28)–(31) are compared in Figures 13(a) and 
13(b) for different 2/g ratios. The values obtained by Equation (28) are close to those obtained 
from Equation (29) in a range of relatively low KRb/K’Rg2 ratios. However, these values reach 
those obtained from Equation (30) at medium KRb/K’Rg2 ratios, and both sets of values approach 
those obtained from Equation (31) at high KRb/K’Rg2 ratios. In this study, we propose the 
following limit values for KRb/K’Rg2 to determine the applicable range for the simplified Models 
1~3: 
 

a = 2/g – 1,   b = 10 (32), (33) 
 
These limits are indicated in Figure 13. 

Evaluation using numerical models consisting of beam elements as shown in Figure 14 was 
performed, including the effects of moment transfer capacity at the restrainer ends. The 
configuration of the models is based on the specimen L-RN’2, and elasto-plastic springs are 
introduced at the restrainer-ends. Asymmetrical imperfections based on experimental 
measurements noted in Table 1 were applied, and stability limits were evaluated by push-over 
analysis for each KRb/K’Rg2 ratio, including geometrical non-linearity. The evaluation results are 
illustrated in Figure 15, where they are compared with the results of the proposed method. In the 
proposed equations, one-sided and asymmetrical modes of Model-1 evaluations provide one of 
the smallest stability limits, asymmetrical modes of Model-3 evaluations have the highest limits, 
and the limits of Model-2 evaluations fall in between. In this case, the numerical analysis results 
are close to Model-1 where KRb/ K’Rg2 < a = 2/g – 1 = 0.6, close to Model-2 where 0.6 < KRb/ 
K’Rg2 < 10, and close to Model-3 where 10 < KRb/ K’Rg2. This implies the evaluated borders a 
and b appropriately assess the stability limit of BRBs in the chevron configuration.  

The KRb/ K’Rg2 value in the specimens L-RN’2 and L-RN0 was 1.70 from Table 1, which is 
larger than a = 2/g – 1 = 0.6 and less than 10. This indicates that these specimens can be 
evaluated with Model-2, instead of Model-1. Figure 16 shows a comparison of the estimated 
stability limit Nlim using Model-1 (■♦) and Model-2 (□◇), with the peak axial force obtained 
from the experimental tests, and also from the results of the previous study (○) [1]. By using 
Model-2, calculation accuracy is slightly improved over Model-1. In general, the results 
obtained using the proposed equations are consistent with the experimental results, and the 
method of selecting the connection models by the stiffness ratios of attached beams is 
considered valid. 
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The following process can be applied in practice to ensure BRB stability. 
 

1) The simplified BRB Model-1 to 3 is selected from the condition of Equation (32) and (33). 
2) Ncr

r is determined by applying the larger equivalent slenderness ratio from Equation (24) 
and (25) into design column curves. Then Nlim1 is calculated by Equation (1). 

3) Nlim2 is calculated from the smaller of Equation (26) and (27). Then the stability limit, Nlim, 
is evaluated as the smaller of Nlim1 and Nlim2. 

4) If Nlim is larger than expected yield axial force of the core, Ncu, BRB stability is secured. If 
not, increase KRb, K’Rg, or Mp

r and repeat steps 1 to 4. 
 

5 CONCLUSIONS 

In this study, the authors’ previously proposed method for stability evaluation of BRBs, 
including bending-moment transfer capacity at restrainer ends, was extended to the use of BRBs 
under asymmetrical conditions in chevron configurations. A compact equation set was 
established to evaluate global BRB stability under asymmetrical conditions. A series of cyclic 
loading tests were conducted on BRBs in a chevron configuration, and the results were 
compared with those obtained using the extended method of stability evaluation. The resulting 
conclusions are summarized as follows: 
 
1) In the cyclic loading tests of BRBs in a chevron configuration, specimens with low 

upper-beam stiffness experienced out-of-plane instability before achieving stable hysteresis 
until core fracture, whereas specimens with restrainer-end reinforcements under the same 
conditions showed stable hysteresis. This may be attributed to the fact that the stiffness of 
the upper connection and the restrainer moment transfer capacity both significantly 
influence BRB stability. 

2) The extended method of the stability evaluation is applicable to the direct estimation of the 
stability limit strength of BRBs regardless of the configuration. The obtained results 
demonstrate that the evaluated stability limit strengths align well with the experimental 
results of collapsed specimens, thus validating the proposed equations.  

3) In order to facilitate the stability evaluation of BRBs, three simple evaluation models were 
proposed for upper connections, applicable for specific ranges of stiffness ratio between the 
upper beam and the upper gusset plate.  
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NOTATIONS 

a, b: border constant for the beam stiffness 
ar: total initial imperfection:   02r t r r ina a e s s L L    , at: maximum imperfection along 

the restrainer, e: axial force eccentricity, sr: clearance between core and restrainer 
yr1: out-of-plane deformation at column-side restrainer end 
yr2: out-of-plane deformation at beam-side restrainer end 
yre1: additional out-of-plane deformation due to bending of connection zone at the 

column-side end 
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yre2: additional out-of-plane deformation due to bending of connection zone at the 
beam-side end 

yrs1: additional deformation due to the column-side end spring rotation 
yrs2: additional deformation due to the beam-side end spring rotation 
Ac: core plate cross-section 
Bc: core plate width 
EIB: bending stiffness of restrainer 
Ed: absorbed hysteretic energy until instability or fracture 
KRb: rotational spring stiffness of attached beam 
KRg1: rotational spring stiffness at column-side gusset plate 
K’Rg2: rotational spring stiffness at beam-side gusset plate 
KRg2: rotational spring stiffness at beam-side gusset plate, including stiffness of the attached 

beam  
Lin: insert zone length 
Lp: plastic zone length of core plate 

0
rM : additional bending moment derived from story out-of-plane drift 
B
yM : bending strength of restrainer 
g
pM : plastic bending strength of gusset plate including axial force effect 
r
pM : bending-moment transfer capacity at restrainer end 

N: axial force 
Ncu: maximum axial strength of core plate 

B
crN : global elastic buckling strength of BRB including effect of gusset plate rotational 

stiffness  
r
crN : global elastic buckling strength with pin conditions at restrainer ends 

limN : expected stability limit axial force 

1limN : expected stability limit axial force assuming elastic gusset plates 

2limN : expected stability limit axial force assuming plastic hinges at gusset plates 

cuN : ultimate axial strength of cruciform core plate at neck 
Ny: yield axial force of core plate 
T: external work 
Up: plastic strain energy stored in plastic hinges 
Us: energy stored in springs 
Uε: strain energy stored in both connection zones 
γJEIB: bending stiffness of connection zone 
δ0: story out-of-plane drift 
δ: axial deformation 
δp: axial plastic deformation 
ξ1L0: connection zone length at column-side 
ξ2L0: connection zone length at beam-side 
Δθr1: rotational angle of plastic hinge at column-side restrainer end 
Δθr2: rotational angle of plastic hinge at beam-side restrainer end 
Δθs1: rotation at column-side gusset plate 
Δθs2: rotation at beam-side gusset plate 
Δug: axial deformation 
ξκRg1: normalized rotational stiffness for column-side gusset plate (=KRg11L0/JEIB) 
ξκRg2: normalized rotational stiffness for beam-side gusset plate (=KRg22L0/JEIB) 
λr: equivalent slenderness ratio for global elastic buckling strength, with pin conditions at 

restrainer ends 
p: normalized cumulative plastic deformation (=Ed/yAc) 
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σcy: yield stress of core plate material 
σry: yield stress of restrainer tube material 
σn: normalized stress of BRB  (= N/Ac) 
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APPENDIX A: 

ESTIMATION OF THE BENDING MOMENT PRODUCED BY OUT-OF-PLANE DRIFT 

  The initial bending moment M0
r at the restrainer ends produced by out-of-plane drift can be 

estimated from numerical analyses using the model as shown in Figure A1 or by using the following 
equation, which takes Rg = max[Rg1, Rg2], and '= min['1, ' 2].  

 

 Figure A1 Bending moment produced by out-of-plane drift 
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KRg is the rotational spring at the gusset plates and KRr is the rotational spring at the restrainer ends. 
When KRr and EIB/L0 become infinity, = 1 and ’= , this equation approaches the simpler formulas 
from the previous study (Equation (31) in Reference [1]) as follows. 
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    from Equations (A1) and (A3). 

 
 

APPENDIX B:  

ESTIMATION OF GLOBAL ELASTIC BUCKLING STRENGTH OF A BRB 

The global elastic buckling strength of a BRB, Ncr
B, including the effects of the connection zone’s 

bending stiffness and the gusset plates’ rotational stiffness, can be estimated from numerical analysis, 
using the model shown in Figure B1, or by using the following equations, which take Rg = min[Rg1, 
Rg2], and = max[ 1,  2].  
 

2B
crN EI  (B1) 

where,  is the value satisfying the following equations. 
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Figure B1 Buckling mode including springs 
 

When KRr is infinity and J= 1, the solution approaches the simpler approximate formula in the 
previous study [1]. 
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where, 
0Rg

L Rg
B

K L

EI
  .  NB

cr becomes 2EIB/L0
2 when LRg=0, and NB

cr =42EIB/L0
2 when LRg=∞. 

 
 

APPENDIX C:  

ESTIMATION OF ROTATIONAL STIFFNESS OF THE UPPER BEAM 

 
The rotational spring stiffness of the gusset plate, KRg2’, and upper beam, KRb, in Table 1 were 

obtained directly by experiments prior to specimen loading as shown in Figure C1. This includes the 
gusset plate deformation, the torsional stiffness of the main beam, the torsional stiffness given by 
rigidly connected secondary beams perpendicular to the main beam, the bending stiffness of the 
other BRB in tension, and the bending deformation of the main beam section along weak axis.  
For practical design, an easy evaluation method for calculation of the gusset plate stiffness, K’Rg, is 
proposed in reference [22]. Also, an evaluation method for calculation of torsional stiffness of the 
main beam is proposed as follows in reference [23], whose validity is confirmed by FEM analyses. 

 
 

      
Figure C1 Experimental evaluation of rotational spring stiffness 
 

The rotational springs of upper beams KRb can be derived as follows.  

Rb RbT RbSBK K K   (C1) 

where, KRbT is the torsional stiffness of the main beam the BRB is attached on, and KRbSB is the 
torsional stiffness provided by the rigidly connected secondary beams perpendicular to the main 
beam. Equation (C1) neglects the bending stiffness of the other BRB in tension and the floor slab, 
and assumes that the main beam rotates in torsion as a rigid body. KRbT can be estimated by the 
following equation. 
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Where, lG is the half length of attached main beam as shown in Figure C2, and GJ and E are 
Saint-Venant's torsional stiffness and bending torsional stiffness of the main beam, respectively.  
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  Figure C2 Rotational spring of attached beam 

 
KRbSB can be estimated by the following equation. 

2
3 SB c

RbSB
SB SB

EI l
K

l h

 
  

 
 (C3) 

where, lSB is the length of secondary beam, EISB is bending stiffness of secondary beam, and hSB is 
the vertical distance from the restrainer end to the center of the secondary beam as shown in Figure 
C3. lc is the connection length along the brace from the center of the main beam as in Figure C2. 

The above estimation formula can be used where the BRB connection point is placed at the 
center of the main beam, is detailed with stiffeners, and the vertical deflection of the other end of 
secondary beam is restrained. When a concrete floor slab is attached on the main beam, the above 
method gives conservative values. The method is also valid for situations requiring a large void 
adjacent to the main beam. 

 
 
 
 
 
 
 
 
 

Figure C3 Effect of out-of-plane secondary beam 

 

 


